人类从动物身上创造的发明。
卫星在太空中位置的不断变化会引起温度的突然变化,有时温差可高达两三百度,严重影响许多仪器的正常工作。受蝴蝶身上的鳞片会随着阳光的方向自动改变角度来调节体温的启发,科学家们将卫星的温度控制系统做成叶片前后辐射和散热能力差异很大的百叶窗样式。在每个窗口的旋转位置安装了一根对温度敏感的金属线,可以随着温度的变化调节窗口的开启和关闭,从而保持卫星内部温度恒定,解决了航天工业的一大难题。
甲虫和仿生学
在自卫时,这种甲虫可以喷射带有恶臭的高温液体“炮弹”来迷惑、刺激和恐吓敌人。科学家解剖后发现,甲虫体内有三个腔室,分别储存有二元酚溶液、过氧化氢和生物酶。二酚和双氧水流入第三室与生物酶混合发生化学反应,在100℃瞬间变成毒液,迅速喷出。这一原理目前已应用于军事技术。二战期间,德国纳粹根据这一机理制造了一种功率巨大、性能安全可靠的新型发动机,安装在巡航导弹上,使其飞行速度更快、更安全、更稳定,提高了命中率。英国伦敦被炸时损失惨重。美国军事专家受甲虫喷洒原理启发,研发出先进的二元武器。这种武器将两种或两种以上能产生毒素的化学物质装入两个独立的容器中。炮弹发射后,隔膜破裂,两种毒物中间体在弹丸飞行的8-10秒内混合反应,在到达目标杀死敌人的瞬间产生致命的毒液。它们易于生产、储存和运输,安全且不易失效。萤火虫可以直接将化学能转化为光能,转化效率达到100%,而普通电灯的发光效率只有6%。人们模仿萤火虫发光原理制作的冷光源,可以提高发光效率十倍以上,大大节约能源。此外,一种基于甲虫表观运动响应机制的空对地速度计已经成功应用于航空。
蜻蜓和仿生
蜻蜓可以通过翅膀振动产生不同于周围大气的局部不稳定气流,利用气流产生的漩涡使自己上升。蜻蜓可以在很小的推力下翱翔,不仅向前飞,还可以向后和左右飞,其向前的飞行速度可达72km/ h,此外,蜻蜓的飞行行为简单,只有两对翅膀不停地拍打。科学家们基于这种结构基础成功开发了一种直升机。飞机高速飞行时,往往会引起剧烈震动,有时甚至会折断机翼,造成飞机坠毁。蜻蜓依靠加重的翼痣安全高速飞行,于是人们效仿蜻蜓,在飞机的两个机翼上增加配重,以解决高速飞行带来的震动这一棘手问题。
为了研究滑翔飞行和碰撞的空气动力学及其飞行效率,研制了四叶驱动和遥控水平控制的机动翼(翼)模型,并首次在风洞中测试了飞行参数。
第二个模型试图安装一个以更快频率飞行的机翼,达到每秒18次振动的速度。与众不同的是,这款车型采用了一种可以可变调节前后翼相位差的装置。
该研究的中心和长期目标是研究由“机翼”驱动的飞机的性能,并将其与由传统螺旋螺旋桨驱动的飞机的效率进行比较。
苍蝇和仿生
家蝇的特别之处在于它的快速飞行技术,这使得它很难被人类抓住。即使在它的背后,也很难接近它。它想象每一种情况,非常小心,可以快速移动。那么,它是怎么做到的呢?
昆虫学家发现苍蝇的后翅退化成一对平衡杆。当它飞行时,平衡杆以一定的频率机械振动,可以调整翅膀的运动方向,是保持苍蝇平衡的导航器。基于这一原理,科学家们开发出了新一代导航仪——振动陀螺仪,大大提高了飞机的飞行性能,使飞机能够自动停止危险的侧翻飞行,并在机体强烈倾斜时自动恢复平衡,即使是在飞机处于最复杂的急转弯时。苍蝇的复眼包含了4000个可以独立成像的单眼,几乎可以看清360。范围内的物体。受蝇眼的启发,人们制作了由1329个小镜头组成的蝇眼相机,一次可以拍摄1329张高分辨率照片。它广泛应用于军事、医疗、航空和航天领域。苍蝇的嗅觉特别灵敏,能迅速分析几十种气味,并立即做出反应。科学家根据苍蝇嗅觉器官的结构,将各种化学反应转化为电脉冲,制成了非常灵敏的小型气体分析仪,广泛应用于航天器、潜艇、矿山等检测气体成分,使科研生产的安全系数更加准确可靠。
蜜蜂和仿生
蜂巢是由排列整齐的六角形小蜂巢组成,每个小蜂巢的底部由三个相同的菱形组成。这些结构与现代数学家精确计算出的结构一模一样——菱形的钝角为109° 28’,锐角为70° 32’。它们是最节省材料的结构,而且它们的容量很大,非常坚固,这让许多专家感到惊讶。人们模仿它的结构,用各种材料制成蜂窝夹层结构板,这种结构板强度高,重量轻,不易传导声音和热量。它们是制造航天飞机、宇宙飞船和人造卫星的理想材料。对偏振光方向敏感的偏振镜相邻排列在蜜蜂复眼的每一只单眼内,可以被太阳精确定位。基于这一原理,科学家们成功研制出偏振光导航仪,并在导航中得到广泛应用。
其他昆虫和仿生学
跳蚤的跳跃能力很高,航空专家对此做过很多研究。受其垂直起飞的启发,英国一家飞机制造公司成功制造出一种几乎可以垂直起降的鹞式飞机。根据昆虫单复眼的结构特点,现代电视技术创造了大屏幕彩电,也可以由小彩电屏幕组成大屏幕,可以在同一个屏幕的任意位置框出一些特定的小画面,既可以播放同一画面,也可以播放不同画面。根据昆虫复眼的结构特点,科学家成功研制出一种更容易发现目标的多孔径光学系统装置,并在国外一些重要武器系统中得到应用。根据某些水生昆虫复眼单眼间相互抑制的原理,制作了侧抑制电子模型,可用于各种摄影系统。拍摄的照片可以增强图像的边缘对比度,突出图像的轮廓,也可以用于提高雷达的显示灵敏度,还可以用于文本和图片识别系统的预处理。美国基于昆虫复眼的处理信息和定向导航原理,研制出了具有很大实用价值的末制导导引头工程模型。日本利用昆虫的形态和特征,开发出了六足机器人等工程机械和建筑物的新建造方法。
未来前景
昆虫在亿万年的进化过程中,随着环境的变化而逐渐进化,都在不同程度地发展着自己的生存技能。随着社会的发展,人们对昆虫各种生命活动的认识越来越多,越来越意识到昆虫对人类的重要性。再加上信息技术的应用,特别是新一代计算机生物电子技术在昆虫学中的应用,一系列生物技术项目,如通过模拟昆虫的感知能力来检测物质的种类和浓度而开发的生物传感器、参考昆虫神经结构来模仿大脑活动而开发的计算机等,将从科学家的设想变为现实,进入各个领域,昆虫将为人类做出更大的贡献。
海豚声纳
鸟飞机
昆虫液压装置
蛇形红外线
鱼潜艇
蜘蛛人造纤维
乌龟装甲车
猫眼-夜视装置
海豚潜艇
野猪的鼻子——世界上第一个防毒面具
袋鼠-在沙漠中行走的独轮车
变色龙-军用伪装设备